HEINRICH HEINE

UNIVERSITAT
DUSSELDOREF

Media Model for the Emulation of

Wireless Broadcast Networks

Bachelor Thesis
by

Matthias Jansen

from

Wuppertal

submitted to

Lehrstuhl fiir Rechnernetze und Kommunikationssysteme
Prof. Dr. Martin Mauve

Heinrich-Heine-Universitiat Diisseldorf
January 2007

Advisors:
Dipl. Inf. Bjorn Scheuermann
Dipl. Wirtsch.-Inf. Christian Lochert

Acknowledgments

A lot of people helped me during my work on this thesis to whom I wish to express
my gratitude. At most I have to thank my advisors Bjorn Scheuermann and Christian
Lochert for the great support during the implementation of the emulator and even greater
support during writing this thesis. I also must thank Dr. Klaus Hinrichs for his view from
an "outsider" to this thesis. He helped me a lot to find lacks of explanation and was a
great source of transliteration which demonstrable improved my English phrases. I want
to thank our cat, too, for running over my keyboard and destroying complete sentences
which forced me to think the paragraph over again. This might have been constructive
one or two times and I must thank "die Arzte" for their great music which kept me up on
late night sessions to complete the paragraph again. At last, but not least, I want to thank
my wife Daniela for being so amicable even in times when she saw nothing but my back

for days.

iii

Contents

[List of Figures|

List of Tables

1__Introduction|

2 Related Work

2.2.1 MarN)
222 NEMAN .

[3 Radio Propagation Model|

[3.1 Free-Space LossModell

[3.2 'Two-Ray Ground Reflection Model|

[3.3 Shadowing Model| .
(3.4 Emulation engine| .

4 The Emulator "Lola\e™

4.1 Implementation| . .

“4.1.1 Design| . .

“.1.4 Logthread| .

4.1.5 Radio PropagationModel|

4.2 Kernel requirements|

Vii

~N O O Lt G

12
12
13
14

17
19
19
20
21
22
23
24
24
25

Contents

4.3 System requirements|

4.4 Requirements for testing applications|

[Performance Analysis|

6__Conclusion|

vi

27

31

33

37

41

List of Figures

[2.1 ~ Design of a paravirtualized emulator, here using XEN|.
[2.2 Design of an emulator using TUN/TAP devices| 8
[3.1 Communication interruption| 10
B2 Differentnode states] oL 11
[3.3 Communication interruption during transmission| 11
[3.4 Free-Space Loss and Two-Ray Ground model| 13
[3.5 Comparison of Free-Space Loss, Two-Ray Ground and Shadowing Model| 15
4.1 Example of a virtual scenario 0 0 0oL 18
4.2 Ping performance of the emulator] 19
4.3 The way of a packet from node X tonode Y| 21
4.4 Kernel packet routing without STS patch|. 25
[5.1 Ping performance| o 28
an roughputf, 29

vii

List of Tables

[3.1 Parameter examples for the Shadowing model]

4.1 Daifferent timer implementations|

iX

Chapter 1

Introduction

These days we cannot imagine a life without communication and even wireless commu-
nication has already entered many aspects of our life. Today there exist already many
more cellphones than conventional telephones and the gap is still growing. With more
and more upcoming DSL connections the number of IEEE802.11 WLAN access points
and clients increases, too. But wireless communication is not limited to those infras-
tructure driven networks. Wireless nodes could build a mobile ad-hoc network which
means that all participating nodes act on the same level. Each node in a mobile ad-hoc
network is router and client at the same time. The possibilities a mobile ad-hoc network
could offer could easily overcome those of any infrastructure network. For example one
very exciting field of research is the use of car-to-car communication. Cars should build
networks only by themselves to exchange messages about traffic jams, accidents or even
latest news. Compared to infrastructure networks communication in mobile ad-hoc net-
works are much more complex. Due to node movement connections can easily break
and usually a packet needs to be forwarded by several other nodes in order to arrive
at the correct destination. These and other problems push the development of different

techniques and protocols to keep this sometimes very chaotic communication alive.

Developing new wireless communication protocols is often hard work. Even if it happens
to be that there exists already usable hardware, in most cases testing with real hardware
is difficult because of several reasons. One reason certainly are the high costs for all the
mobile nodes needed for a good testing environment. Another reason is the difficult and
time-consuming running of different testing scenarios. Despite of all these drawbacks

real testing with real hardware offers the most realistic results and should be done at the

CHAPTER 1. INTRODUCTION

end of the development to verify all results which have been generated with simulators

or emulators.

So the first approach for testing is often the use of a common network simulator like
the well-known ns-2 [NS2]. A network simulator is an application which simulates a
completely virtual environment. It includes the network and physical layer, the oper-
ating system layer as well as the protocol implementation and the testing tools. These
simulators provide all functions needed to rebuild a complete wireless scenario includ-
ing a wireless propagation model, a huge number of mobile nodes, collision simulation
and many more features to be as realistic as possible. It is usually a good idea to use a
simulator to get a first set of results. But despite all possibilities a simulator can offer
it differs from reality in one important fact: a simulation is neither realtime nor a real
environment so the results must be handled with a certain care. The environment of a
simulator is artificial. There is no real operating system involved which has a certain
impact on the overall performance. Also the given hardware might act differently com-
pared to the simulated system. It is impossible to include all parameters which influence
a real testing environment. Contrary to the use of a simulator a network emulator only
imitates a certain part of the environment, in most cases the physical layer, and available
software is able to work without noticing that there is, e.g., no real wireless network
available. This allows the use of already existing software with the emulator. The use of
real software implies in most cases that the emulator must not run much slower than real
time because this would break, e.g., a client server communication which uses timeouts
and raising these timeout values would make communication nearly impossible. That
is the reason why a network emulator is in some cases less realistic compared to a sim-
ulator and usually supports a much smaller number of mobile nodes. As the simulator
can stretch time as needed it can perform much better calculation and doesn’t need to
complete calculation in a certain time. So the simulator can easily calculate several min-
utes for just one simulated second. A quite different situation is the impact of the used
operating systems and other system environment details where the emulator beats the
simulator in realism. A benefit of the emulator is the possibility to reuse the source code
in a real implementation with very few changes. The ability to use current applications

for testing like a specific routing daemon might shorten preparation time considerably.

There exist already many emulators for wireless networks but an emulator capable of
running a realistic radio propagation model like a simulator in real time with support

for new and non-existing hardware interfaces is not available to the best of our knowl-

edge. One reason for implementing a completely new emulator was the intention to
test the CXCC protocol [SLMO7] developed at this chair by Bjorn Scheuermann and
Christian Lochert. This protocol needs special hardware hooks which are not provided
by any hardware yet. Tests have already been done using a simulator and a sensor net-
work but to verify the results with accordance to implementation details and impacts of
the underlying operating system an emulator is needed which supports the emulation of
currently unavailable hardware in cooperation with a realistic radio propagation model.
These challenging requirements make high demands on the features of the emulator like
a fine-grain timer. In the context of this thesis we present an emulator that supports a
timer granularity below 100 us. In order to emulate a 10 MBit wireless network the
emulator has to be able to switch from transmission start to packet reception for a small
packet (100 byte) in about 100 byte / 10 Mbit/s = 76,23 s and has to support a realistic
radio propagation model including collisions and transmission delay. Every node has a
set of states which are switched within the mentioned time and keep information about
all network settings. This information is needed to decide whether the communication
could be completed successfully or not. To be able to emulate a real IEEE802.11 WLAN
even smaller timing intervals are needed because of the tiny backoff times. In order to be
able to run on just one physical machine to be most cost-effective at the same time some

restrictions for the design had to be observed.

This thesis describes the Low Latency Wireless Emulator (LoLaWe) which is features a
fine-grained timer thread with timer intervals of about 70 ws. This enables the emulator
to simulate a complex radio propagation model in realtime. Further dynamic loading of
different emulation engines is supported for easier development. LoLaWe is able to run
a complex radio propagation model with a network bandwidth of 1 MBit and 20 nodes

on a single computer.

The remainder of this thesis is structured as follows. The next chapter will deal with other
approaches to emulate or simulate wireless networks and show the differences to the
newly presented emulator. The third chapter will describe a common radio propagation
model to better understand the special aspects in Chapter 4 which deals with the main
aspects of implementation of the new emulator. Chapter 5 will present a performance
analysis where the new emulator is compared to the MarNET emulator. Finally, Chapter

6 concludes the thesis.

Chapter 2

Related Work

2.1 Simulators

Simulators provide many functionalities and it is common practice to evaluate a newly
developed protocol using an implementation in a simulator first. It is possible to simulate
a large number of nodes with a realistic radio propagation model depending on the testing
machine and its hardware specifications like CPU and RAM which can’t be handled
by any emulator. This allows the use of a much more complex model compared to an
emulator running in real time and so the results could provide a better representation of
the physical behavior of radio propagation. The major drawback of using a simulator
is the complete abstraction from real implementation and running systems. That means
that the results have to be treated carefully because the results from the radio model may
be realistic but the rest of the system might act different compared to a real physical node
with a wide range of possible influences to the network connectivity (operating system,
hardware interoperation, driver implementation, other running software, etc.). It is also
necessary to implement the protocol differently compared to a real implementation. This
means that the protocol needs to be implemented again in order to run it on real hardware.
Contrary to this a protocol implementation used in the emulator described here could be
transfered to real and identical hardware and be used immediately. As the number of
simulators is very large and the functionality does not much differ no special simulator
is described here but the network simulator ns-2 [NS2] as the probably most commonly

used network simulator shall be named as an example.

CHAPTER 2. RELATED WORK

2.2 Emulators

Contrary to simulators emulators only provide a certain piece of the overall environment.
There exist lots of different emulators with different design goals. These goals all need
different degrees of emulation. This could vary from just the network layer to a complete
emulated computer or every stage in between. There are emulators for special commu-
nications like the Ohio Network Emulator ONE [AO96] which is specialised for satellite
communication or emulators which only control the traffic going through or into a router
like the NIST Net [CS03]. Other emulators focus on visualisation (JEmu [FTOO01]) and
less on a realistic radio model or distribute the emulation on multiple machines as it is
done in MobiNet [MRBV04]. Some emulators use virtualization as a presentation for
virtual nodes like MarNET [SHF05] and [BSR"05] which is also proposed in [MHRO5].
Another approach is the use of special hardware to emulate radio propagation which is
used in [JS]. Obviously this isn’t very portable and is another source of costs. There
also exist emulators with a limited purpose like [WLZ*04] and MEADOWS [LNH'04]
which aim at the emulation of sensor networks. There are many other emulators but to
better understand some basic techniques two emulators are representatively described:
MarNET and NEMAN.

2.2.1 MarNET

MarNET is an emulator based on the paravirtualization [PAR] provided by XEN [XEN].
XEN is a so called hypervisor which enables a PC to run multiple instances of operating
systems at the same time and allows the user to switch between them. The operating
systems are so called paravirtualized which means that they need modifications to be
able to run with a hypervisor. Each virtual mobile node is represented by a virtual in-
stance of Linux (DomU) running under the XEN hypervisor. Figure shows the main
organization. The main advantage is the complete separation of each node which allows
a very easy way to implement protocols and applications without special precaution be-
cause the node itself doesn’t know that it is only a virtual instance and behaves like a
real physical node. Only the network communication between the nodes is simulated
and controlled by an application running on the main Linux instance (Dom0). This ap-

plication has an easy to use graphical interface which allows to start a number of virtual

2.2. EMULATORS

S o~ . ~
m . Virtual wirelss nstwork_

Control
channel

Control
channel

Linux Kernel
Network simluator

DomO

XEN Hypervisor

Figure 2.1: Design of a paravirtualized emulator, here using XEN

nodes. The simulation data can be provided with a ns-2 compatible scenario file. The
complete emulation can be followed using a graphical representation of all virtual nodes
where the edges from node to node show the connection quality. But the emulator allows
only to set the bandwidth, a transmission delay and a ratio for packet delivery errors so
that the connection quality is only calculated using the pure distance. Unfortunately the
main advantage is also the main drawback because switching between complete Linux
instances is obviously very expensive so that the latency for sending packets from node to
node could easily reach about 1 to 2 ms with peaks of about 15 ms. As already discussed
a complex emulation would need timer granularity of only a few microseconds. That is
the reason why it is quite difficult if not impossible to rebuild complex radio propaga-
tion models using a paravirtualization because of the huge overhead. As a consequence
MarNET is unable to provide the required features. In other cases where low latency
isn’t needed this approach nevertheless provides a very easy and intuitive interface for

emulation of completely separated virtual nodes.

2.2.2 NEMAN

A Network Emulator for Mobile Ad-Hoc Networks (NEMAN) [PP05] was developed at
the University of Oslo derived from MobiEmu [ZL02]. Like MobiEmu NEMAN has a

graphical frontend to the emulation settings, node positions etc., and controls the under-

CHAPTER 2. RELATED WORK

Emulator Layer 2 Layer 3

\
A
/

Y
A
A

Testing
tools

\
A
/

\
A
/

Y
A
y

Userspace Kernel Userspace

Figure 2.2: Design of an emulator using TUN/TAP devices as representation for each
mobile node

lying topology manager which is the real emulator. It uses TUN/TAP devices, virtual
ethernet interfaces provided by the Linux kernel which connect to a running userspace
process instead of a real physical layer on OSI layer 2, as a representative for the mobile
nodes (see Figure[2.2)). NEMAN opens one TAP device for each node and connects them
with the topology manager which is controlled by the graphical user interface connected
with the tap0 device and a separated control channel. In contrast to the MarNET emulator
this emulator only runs one instance of a Linux kernel without the need for the expensive
switch between different kernel instances. But this means that all test applications run
on the same systems and have to share the same network stack. To work correctly these
applications need special treatment of socket connections which might disqualify some
applications but the advantage of the better timing latency should outweigh the draw-
back of special application requirements. The here presented emulator uses also TAP
devices and thus has the same benefits and disadvantages. However, the main difference
is the fact that NEMAN doesn’t support a realistic radio propagation model which would
include collisions, noise-signal-ratios, delivery latency etc. To be able to emulate these

functions at least a high precession timer is needed which is not included in NEMAN.

Chapter 3

Radio Propagation Model

Wireless networks are different in many aspects compared to a cable network. The media
(air) is shared by all actively participating nodes and in most cases each node transmits
the signal in every direction. Each node is in one of the 4 possible states: idle, receiv-
ing (rx), transmitting (tx) or blocked. Normally a node is in the idle state. While being in
the state receiving the node only changes to the state blocked after an interruption while
receiving. In principle all situations where the signal level is not strong enough are called

collisions.

Sending in a 360° radius leads to the possibility that not only the target node receives
the signal but also every other node within the maximum range of transmission. This
signal, which a node receives without being the addressed one, increases the noise level.
The basic noise is an overall hissing due to all other radio communications, electronic
devices like microwaves and other sources of radio waves. With increasing network
density the noise level at each node increases due to additional noise of multiple nodes
in the neighborhood. When a node receives a packet with itself as destination the signal
power of this specific packet needs to be significantly higher as the current noise level
or else it is impossible for the node to receive and decode the data correctly. If it is
impossible to decode a packet or the node receives packets from two different other
nodes the failure is a collision. This can happen when a nearby node sends data to
a third node while the distance to the current nodes communication partner is bigger
because signal power decreases as distances increases. In this case the signal of the
interrupting node is stronger. Figure [3.1] shows a very simple example where two nodes

are communicating (node 1 and node 2) and are interrupted by node 3 because the signal

CHAPTER 3. RADIO PROPAGATION MODEL

Interfering zone

Figure 3.1: Node 3 could interrupt the communication between node 1 and 2

of node 3 is stronger than the signal of node 1 so node 2 is unable to decode the data from
node 1 correctly. After the sending interruption node 2 stays in collision or blocked state
until node 1 finishes the transmission because node 1 is unable to detect the collision
while transmitting a single packet. Figure [3.2] shows a state diagram with all possible
transitions. In Figure [3.3|node 2 sends a packet to node 1 after 2 ms with a signal power
of -60 dBm. Node 4 starts a transmission to another node after 4 ms but the signal power
isn’t high enough to interfere the communication between node 1 and node 2. But after 5
ms node 3 starts transmitting packets with a signal power high enough to raise the noise
at node 1 above the threshold and the signal from node 2 is disturbed. As node 2 can’t
recognize the interruption it finalize the transmission despite the fact the node 1 could

not decode the complete packet and so rejects the rest of the transmission.

To be able to emulate a virtual node to node communication a radio propagation model
must be used which defines how the wireless communication works in detail. This can
range from a simple distance boundary system which only checks if the target node is
within a certain radius from the source node to a complex simulation system which cal-
culates the sending of packets through air including physical aspects like reflection. For
a great flexibility and to be able to use different radio propagation models the emula-
tor loads the emulation engine, which defines the radio propagation model, dynamically
during the start defined by a command line parameter. This allows the users to create
many emulation engines that fit best with their requirements without the need to imple-
ment the details directly in the emulator. These engines can easily be distributed amongst

researchers for better testing and comparison of results.

10

As seen before the distance between two wireless mobile nodes is of great importance
because the distance has the greatest influence to the signal power. In order to calculate
the power at the receiving node several things have to be taken into account. These
include the sending power, the antenna gain and even more important the power loss
along the distance between sender and receiver. To calculate the power loss the three

most popular models are "Free Space Loss", "Two-ray Ground Reflection Model" and

incoming cdg
s1 — noise 3

start of packet
transmission

nnection s1
threshold

transmission
successfully

transmission
end of s1

completed

additional noise

Figure 3.2: Different node states

"Shadowing Model" which are all implemented in ns-2 [RAD].

Signal power [dBm]

s1 — noise < threshold

-20
30 k I I Sigljnal from nlode2 to nbdel I
Collisi Interrupting signal from node3 -------

-40 - ollIsion Not-interrupting signal from node4 --------

-50 max. acceptable Noise -

-60 +

-70 i 3

e e L |

-90 3 }

-100 | 1 ! I 1 | !
0 2 4 6 8 10 12

Time [ms]

Figure 3.3: Communication interruption during transmission

11

CHAPTER 3. RADIO PROPAGATION MODEL

3.1 Free-Space Loss Model

The free space loss is the simplest model which assumes that there are ideal propaga-
tion conditions. This means that there is a clear line-of-sight path between sender and
receiver and the signal runs only on one straight line. H.T. Friis developed the following

formula [Fri46] to calculate the signal power P,(d) at the receiver at distance d

P,G,;G.\?
P(d) = —(:mt)ZdzL 3.1)

where P, is the sending power, G; and G, are the antenna gains of sender and receiver, L
is the system loss and A is the wavelength. Normally ns-2 defines G; =G, =L=1. A

convenient way to express the free space loss is in terms of dB as shown in (3.2))

FSLyp(d) = 20(logo(d) +logyo(f)) + K (3.2)

where d is the distance, f is the frequency and K is a correction constant depending on
the units used for d and f. In the specific case of this newly designed emulator where a
2.4 GHz WLAN network is emulated the formula simplify to

FSLyp(d) = —40.4 — 201log,o(d) (3.3)

The Free-Space Loss formula is good for near communication but is increasingly inac-

curate for far distances.

3.2 Two-Ray Ground Reflection Model

The Two-Ray Ground Reflection Model is an improved version of the Free-Space Loss
model. In reality a single straight line of communication is seldom the only signal prop-

agation. The Tow-Ray Ground Reflection Model also includes signals which arrive at

12

3.3. SHADOWING MODEL

(a) Free-Space Loss

primary ray

delayed ray

(b) Two-Ray Ground

Figure 3.4: a shows the simplified propagation used in the Free-Space Loss Model, b
shows the propagation used by the Two-Ray Ground Reflection Model

the receiver due to reflections from the ground (see Figure [3.4). Therefor (3.4) includes

the heights of the receiver and sender (h, and A;).

_ RG,Ghi?

(3.4)

This formula decreases faster than (3.1)) as the distance increases but the Two-Ray Ground
Reflection Model is inaccurate for short distances because of the oscillation caused by
the combination of the destructive and constructive rays. That is the reason why some
simulators (and this emulator) uses a combination of Two-Ray Ground and Free Space

Loss models chosen by a threshold d. where both models produce the same value.

dc= m (3.5)

3.3 Shadowing Model

Both presented models, Free Space Loss and Two Ray Ground, are deterministic assum-
ing a perfect circle around the sending node. In reality the signal is reflected many times

so the signal power contains a certain random factor also known as fading effects. The

13

CHAPTER 3. RADIO PROPAGATION MODEL

Environment B oyup of X,
Outdoor urban area 2.7t05 41012
Outdoor free space 2 4to0 12
Indoor line-of-sight | 1.6 to 1.8 3to6
Indoor obstructed 4t06 6.8

Table 3.1: Parameter examples for the Shadowing model

shadowing model tries to include these effects with a certain random factor. This factor
needs to be configured with a few parameters to match the environment to be simulated
because an open terrain is much different compared to a terrain in the city with multi-
ple reflection points. The complete equation, containing two parts of the model — the
path loss model and the shadowing model — is shown in (3.6) where f3 is the pass loss
exponent and X;p 1s a random value of a Gaussian distribution with 4 = 0 and o as a
parameter. Both 8 and ¢ need to be specified. Table lists typical values for these
parameters which are defined in [RAD].

{P’(d)] = —10B1log (i) + XuB (3.6)
dB do

3.4 Emulation engine

The advantage of the provided emulation engine is the use of a complex radio propa-
gation model. This model includes calculating the signal power of a transmission at the
receiver and simulates collisions. To better represent the conditions each node is in one of
a set of states (see Figure[3.2)). The Free-Space Loss and the Two-Ray Ground model are
implemented. Figure [3.5] compares the Free-Space Loss, the Two-Ray Ground and the
Shadowing model. The parameters are 20 dBm (equivalent to 100 mW) sending power,
a wavelength of 0.125 meter for a 2.4 Ghz WLAN and a sender and receiver height of 1
meter. The additional parameters for the Shadowing model are setto f = 1.2 (B = 1.5),
do = 1, the standard deviation for the X,z distribution 653 = 5 and mean ;5 = 0.

It is easy to see at Figure [3.5] that the Two-Ray Ground Model is unrealistically high at
short distances, which is the reason for not using only the Two-Ray Ground model in

simulations, but is decreasing significantly faster than the Free-Space Loss model. The

14

3.4. EMULATION ENGINE

20 T T T T T

[T T
Free-Space Loss
Two-Ray Ground -------
Shadowing Model, beta=1.2 --------

ol Shadowing Model, beta = 1.5 - |
\ Minimum signal decoding power ------

Estimated signal power [dBm]

-100 ! ! ! ! ! ! g| ! !
20 40 60 80 100 120 140 160 180 200

Distance [m]

Figure 3.5: Comparison of Free-Space Loss, Two-Ray Ground and Shadowing Model

d. from (3.5)) is about 100 meter where both models provide the same estimated signal
power. The Shadowing model is non-deterministic which might be more realistic but
highly depends on the parameters which need a lot of testing to get the right values for
the right environment. As shown in Figure the slight adjustment of B with a value
0.3 leads to a significantly different transmission power so the results of the Shadowing

Model need to be treated with a certain care.

15

Chapter 4

The Emulator "LoLaWe"

LoLaWe has been developed as an emulator for wireless broadcast networks. As being
a wireless network emulator it abstracts the wireless network and enables the use of
multiple virtual mobile nodes communicating with each other through a virtual media on
a single computer. To be able to compare the results achieved with an emulator it has to
be as close as possible to real testing scenarios. Therefore the emulator needs to know
the boundaries of the testing environment which includes the number of nodes, their
movements and the size of the testing area where the movements of the nodes take place.
The testing area is assumed to be rectangular with a defined width and height. Every
node has an initial position and a number of subsequent waypoints associated with a
corresponding time coordinates. Using those information and the simplifications that
every node moves on a straight line with constant speed between two positions and all
nodes are on a plain 2D territory the current position at any given time can be calculated.
Figure {.1] gives an example of a visualized virtual scenario. All information needed by
the emulator are provided by the user through a so called scenario file. In Appendix [B|a

complete description of the file format is provided.

After loading the scenario file the emulator opens a number of TUN/TAP network inter-
faces (tapO to tapX, where X is the number of nodes in the scenario), each tap device
representing a single virtual node. When all interfaces are open the emulator starts the
real emulation. The emulator waits for a packet sent through any of the open tap devices.
When the emulator receives a packet through one tap device the packet is examined and
the target node is extracted. Now the actual positions of both the sending and receiving

node are calculated in order to determine the signal power and to decide whether the

17

CHAPTER 4. THE EMULATOR "LOLAWE"

| Scenario width ,

Scenario
height

Figure 4.1: Example of a virtual scenario. N, are virtual nodes and P, are positions

packet could be transmitted correctly or the distance between the two nodes is too long.
If the target node is within the sending radius of the source node the packet is scheduled
for transmission with a delay according to the size of the packet. This is necessary to
imitate a given bandwidth of the wireless network to ensure that the packet isn’t trans-
mitted faster than the network would be able to process. In any case the noise level at
each node is incremented by the corresponding signal level of the current packet at the
transmission start and decremented at the transmission end. Only if the packet could be
received correctly the signal level at the target node is stored instead of raising the noise
level. This is needed as another packet could interrupt the transmission which requires

the comparison of the signal and noise level.

Figure 4.2] shows a performance test of the provided emulator with the normal ping util-
ity and the flood option which sends as many ICMP Echo Requests (a common network
testing protocol) as possible. In this test the emulator calculates a realistic radio prop-
agation model according to chapter [3] and emulates a 1 MBit network. The theoretical
minimal round trip time (RTT - the time needed for a complete request and answer) is
about 1.6 ms which is always longer in reality because of the processing time of each
packet. The Figure shows a value about 1.8 ms for the measured RTT using the emu-
lator which is only about 13% higher than the theoretical minimum. For an even better
conformity with a real transmission a small amount of processing time could be added

to the timing. These values are not comparable directly to a complete IEEE802.11 net-

18

4.1. IMPLEMENTATION

work stack because the higher complexity with additional analysis like carrier sensing

increases the RTT time.

T T T
2.4 Ping 1MBit emulation .

22 | —

1.8 WWWWMNWWWVWWMWWMWWWMWMMMWMW

16 | —

RTT [ms]

14 —

1.2 - .

1 1 1 1 1 1
0 100 200 300 400 500 600

Packet number

Figure 4.2: Ping performance of the emulator

4.1 Implementation

The emulator is written in plain C++ with the use of different libraries and needs a
modified Linux kernel to run properly. As a format for scenario files XML is chosen
as it is easy to read and write for human users and can be simply translated into other
formats including a better visual display like HTML with CSS using XLST. It holds the
information about the scenario environment area, the number of nodes and the positions
the nodes should have at a given time. See Appendix |B|for a complete description of the

file format.

4.1.1 Design

One major design goal was the ability to use different emulation models without the need
to implement them in the main emulator program. In order to achieve this functionality

no emulating routines are implemented in the main program. To start an emulation the

19

CHAPTER 4. THE EMULATOR "LOLAWE"

emulator needs to load a emulation engine dynamically which can be defined by a com-
mand line parameter. This provides the possibility to create different emulation engines
and use them on the same emulator without any further needs despites the development
of the specific emulation code. Due to this circumstance it is very easy to add function-
ality to the emulator and to share these add-ons with other testers or developers. See

Appendix [A] for further details on how to create a custom emulation engine.

The emulator basically consists of one process with three threads running. These threads
are the main listener thread, the timer thread and the logging thread. The listener thread
receives packets sent through any tap interface, communicates with the kernel, checks
the packets and delegates the control to the chosen emulation engine. The timer thread
allows the fine-grained scheduling of events to a future time and the logging thread allows
to asynchronously write messages to the logfile. Placing the message on a queue at
the logthread allows the main emulation thread to continue without a otherwise needed

interruption for the time-consuming I/O operations to save the message to disk.

Figure [4.3] shows the usual way of a correctly transmitted packet sent from node X to
node Y. The first station on the way is the kernel as it gets the packet directly from
the associated tap device. This packet is then delivered to the corresponding userspace
application which is in this case the emulator itself. After analysing the packet and
extracting source and target node the main process calls the emulation engine module
to handle the further treatment of the packet. If the emulation engine decides that the
packet could be transfered correctly (i.e. the target node is in range and the noise level
is low enough) it schedules the transmission using the timer thread. After the timeout
of packet transmission the timer calls again the emulation engine to check whether the
transmission was interrupted or did succeed. If the latter is the case the packet finally is
handled back to the main process to send the packet through the kernel interface to the

right tap device where it is delivered to the listening application.

4.1.2 Main Listener Thread

The main thread opens one TAP device for each virtual mobile node. Every incoming
and outgoing traffic comes directly through these TAP devices and is traveling from the

userspace application through the kernel to the emulator process or vice versa. Every

20

4.1. IMPLEMENTATION

transmission

Userspace

sending receiving

packet packet

to tapY . from tapX

Scenario
A 4 A
tapX /dev/net/tun tapY

Kernelspace

Kernel

Time

Figure 4.3: The way of a packet from node X to node Y

packet is examined and information about source and target node is extracted to be able
to deliver the packet to the correct target TAP device. ARP (Address Resolution Protocol)
packets are not handled as normally. Usually an ARP packet is sent to every computer in
the target subnet and the correct computer answers the query. The Linux kernel answers
to an ARP Packet with the IP of the incoming interface although the target IP address
is bound to another interface of the same machine. That behaviour is useful in normal
networks but an emulated network on one single machine needs better separation. So
in contrast to a real behavior of networks ARP packets are only delivered to the real
destination because the Linux kernel answers to an ARP request with the MAC address
of the first interface which receives the request regardless if this interface really is bound
to the correct destination IP address or one other local interface on the same machine.
This might be useful in a real network but because this emulator runs all virtual network
interfaces on the same physical machine this behavior ruins the emulation with false
MAC-IP pairs.

4.1.3 Timer Thread

One of the major problems was the implementation of a timer thread with a very fine

granularity. In order to emulate a wireless network with real latency times the timer

21

CHAPTER 4. THE EMULATOR "LOLAWE"

Implementation min. Timer interval
nanosleep with normal kernel 1 ms
RTC 122 us
nanosleep with HRTimer patched kernel 70 us

Table 4.1: Different timer implementations and the corresponding minimal timer interval

must be called at least every 100 microseconds. Different techniques are available to
call a timer event in a certain interval. The easiest way is just to call a sleep function like
nanosleep. But the vanilla Linux kernel from Linus Torvalds only provides a sleep granu-
larity of about 1 millisecond (at least until the current version 2.6.18). Another approach
is the use of the kernel support for the hardware Real Time Clock (RTC). The RTC can
be set to the maximum of 8192 Hz. Using this setting every 122 microseconds a RTC
interrupt is thrown which is the finest granularity available when using RTC events. But
to further improve the grain size a kernel patch called HRTimer [Gle] is used to change
the kernel-internal clock mechanism. After applying this patch the kernel allows theoret-
ical timer sleeps down to 1 nanosecond. To achieve a good compromise between timer
accuracy and CPU utilisation nanosleep is used with a sleep time of 20 microseconds.
Because of other impacts like the process scheduler this leads to a accuracy of about 70
microseconds which might be improved with further kernel scheduler patches. Table {.1]
gives a overview about the different implementations and timings. These measures were
taken on an AMD64 box running Gentoo Linux with the kernel version 2.6.18. All
testing were done with the here described emulator with a ping test between two TAP
interfaces using a minimal emulation engine which scheduled the sending of the packet
with a minimal delay of 1 nanosecond. This ensures that the packet gets sent on the very

next awaking of the timer thread.

4.1.4 Logthread

In order to interpret the results of an emulation it is necessary to reconstruct the hap-
penings during the emulation. That can only be achieved by analysing a log file which
contains all events. As disc input/output (I/O) is very expensive in regard to waiting times
it is not advisable to write every log message directly to disc. To avoid this behaviour the
logging has been outsourced to a dedicated thread. This implementation allows the other

threads to continue with their time-critical work. The logthread writes the data when-

22

4.1. IMPLEMENTATION

ever the opportunity arises. The best way to implement a asynchronous thread is the
producer consumer ringbuffer. In this case multiple producers (the other threads) adding
constantly new log messages to a queue while the consumer (the logthread) writes them

to disc.

4.1.5 Radio Propagation Model

The example emulation engine provided with this emulator implements a realistic radio
propagation model which decides if a packet is received correctly using the noise signal
ratio to determine if any collision has happened at the target node. To calculate the noise
and signal level at each node for every transmission the distance of each node couple
(A,B) is calculated with the information coming from the scenario (Appendix [B)) file and
the current emulation time. (4.2) calculates the position of node A at time T where P; is
the last configured position right before time 7, P; is the next position configured after
time 7, (xp;,yp;) 1s the coordinate at position i (i € {1,2}) and (xg,yo) is the calculated
position. Atj is the weighted time difference between 7 to the time of position P; (Tp1)

as A1 is the weighted time difference between 7 and the time of position P, (Tpy).

T—1Tp1
A}Ll TP2—1Tp1

= 4.1)
ALy =T

TP2—1TpP1

X0 xp1 - ATy +xpy - ATy
— 4.2)
Yo yp1 ATy +ypr - ATy

Having calculated both positions of node A (x1,y;) and B (x3,y2) the distance d is calcu-

lated according to common vector distance calculation (4.3).

d= /(0 =02+ (1 - y) (43)

23

CHAPTER 4. THE EMULATOR "LOLAWE"

With this distance the signal power is calculated as described in Chapter [3] using the
Free-Space Loss and the Two-Ray Ground model. Because dB is a logarithmic unit it is
not possible to simply add multiple signal levels to get the complete noise level. Instead
it is necessary to convert each value back to a linear unit, add the new noise and convert

back to a logarithmic value.

noise;orq = 1OgIO (lonoisemml/lo + IOnOisenEW/m) (44)

When a packet is sent from node A to node B the signal level is calculated using the
formulas above and is compared to the current noise level at the target node. If the dif-
ference is higher than a given limit the packet is considered to be able to be received. But
if the noise level increases during packet delivery the signal noise ratio is checked again
and may brake the transmission. Only if the transmission ends without any interrupts
the packet is delivered to the corresponding node. Then the noise levels of all nodes are

decremented again.

4.2 Kernel requirements

4.2.1 Send-to-Self Patch

Every emulated wireless node has an opened TAP device which needs the TUN/TAP-
Driver enabled in the kernel configuration. But because of optimizations of the current
Linux kernel every IP packet which destination is an IP address bound to a local net-
work interface gets routed directly to the specific interface avoiding OSI level 2 (see
Figure [4.4). These packets will never reach the emulator. In order to receive packets
from internal routing at the opened TAP devices the kernel needs to be constrained to
send each packet through the complete IP chain including physical layer which is in our
case the emulator. This is done by the Send-to-Self (STS) patch originally developed by
Ben Greear [Gre]. After applying this patch the kernel treads every packet equally.

24

4.3. SYSTEM REQUIREMENTS

Emulator @ Layer 2 Layer 3 @
Userspace Kernel

Figure 4.4: Kernel packet routing without STS patch

4.2.2 HRTimers Patch

One major benefit of using an emulator instead of a simulator is the use of realtime
information. But to accomplish realtime measurement a timer with fine granularity is
needed. The normal Linux kernel only provides a granularity of about 1 millisecond. The
hrtimers patch developed by Thomas Gleixner [Gle] enables a timer interval of about 70

microseconds usable with normal glibc functions like "nanosleep".

4.3 System requirements

The emulator uses external libraries for a better and faster development. Therefor these
libraries have to be installed on the system to run the emulator. For the thread implemen-
tation the Gnu Common C++ [CPP] library is used. GNU Common C++ is a framework
with class support for easy developing of thread enabled applications. Another impor-
tant library is Libxml++ [JdC]. This library is a C++ wrapper for the libxml XML parser
library. This library is used to parse the scenario XML files using the DOM method.
This provides a fast integration of XML-based files for storing information about the

scenario.

25

CHAPTER 4. THE EMULATOR "LOLAWE"

4.4 Requirements for testing applications

Because of the special nature of this emulator using TAP devices for representation of
each node every application must open each socket using the SO_BINDTODEVICE
option to ensure that the application only listens and send through the chosen TAP device.
This is very critical due to the fact that all processes for all nodes are running on the same
physical machine and without this option each port could only be opened by one process
at a time and because all interfaces are local interfaces the process would get every packet
directed for this port. The only avoidance of this restriction is a completely separated
environment like the paravirtualization used by MarNET or a virtual environment used
by a simulator. As the intention of this thesis was the development of an emulator a
simulator is no alternative and with paravirtualization the latency would be to high for
a complex radio propagation model. The use of TAP devices on only one instance of
an operating system offers the best possibilities for fine-grained timers coupled with
least overhead. In contrast the modifications to testing applications should be rather
simple and many applications already included this functionality. So the benefits of this

limitation should outweigh the drawbacks.

26

Chapter 5

Performance Analysis

In order to evaluate the performance of the new emulator it is compared to the MarNET
emulator. The latency as well as the network throughput are compared. The results
provide good hints about the abilities the emulator could offer. The testing was done on
a single core AMDG64 computer. In each case the emulated network consists of 4 nodes.
For the tests the emulation functionalities were reduced to the minimum. In the MarNET
emulator only the virtual operating systems (XEN DomUs) were started without the real
emulation unit. In this mode each node is able to send to every other node without any
delay. On the other hand LoLaWe used a minimal emulation engine which scheduled
the packet delivery to the very next timer awaking without any further simulation or
testing. Using these simplifications the results should provide the best performance of

each emulator.

Latency testing was done by the simple network analysing tool "ping" which sends ICMP
Echo Requests for response time measurement. In both emulators the testing assumed a
sending interval about 0.1 ms. During the measurement another ping was sent between
two independent nodes to simulate the impact of a minimal network load. Figure [5.1]
indicates that both emulators are capable of short RTT times. LoLaWe is quiet stable
around 0.05 ms with few short peaks while MarNET in contrast suffers from many and
rather high peaks. The statistics of table clearly prove that LoLLaWe is the better per-
forming system regarding dependable constant timings for a more realistic emulation.

The network testing tool "NetlO" [NET] was used for the measurement of the network

throughput. NetlO opens a server at one end of the communication channel and the same

27

CHAPTER 5. PERFORMANCE ANALYSIS

10 T T T T
r MarNET
LoLaWe -------

RTT [ms]

(I 1
[\
oo M, S

0. |
I
i ;

B PPN TN ,‘/k/|v o ALk DMLY

T
Loar- TNV W'Y AT SN OV Y DU SO W 1 1 SRS ISV IR D

001 | | | |
0 100 200 300 400 500

Packet number

Figure 5.1: Ping comparison of MarNET and LoLaWe

Emulator | Mean value | standard deviation
MarNET 0.1585 0.3680
LoLaWe 0.0434 0.0058

Table 5.1: Mean value and standard deviation of the RTT measurement (Figure

program is used as the client. It is possible to test UDP as well as TCP packets and by
default different packet sizes are used. Figure [5.2] shows the results of the UDP and TCP
throughput measurement. The TCP throughput of LoLaWe is about three times faster
than MarNET. UDP packets are even sent ten times faster. Notable are the differences
between various packet sizes. While LoLaWe performs better with increasing packet
sizes (except the 32 kbyte packets) MarNET stays more or less at the same level. The
big performance differences between UDP and TCP communications in both emulators
need further investigation but in both cases it is very clear that LoLaWe easily outper-
forms MarNET by orders of magnitude. While MarNET seems to be unable to emulate
exhaustive UDP traffic in a 100 MBit network LoLaWe should be able to emulate even

a gigabit network. As both emulators are designed to emulate mobile ad-hoc networks

28

with considerably lower bandwidths these results are of less significance.

50000

[LoLaWe —
Il MarNET

40000 1 —

45000

35000 —

30000 —

25000 —

kbytes/s

20000+

[

[

150001

10000

[

[

5000 -

. 'm0 H = N

1 kb 2 kb 4 kb 8 kb 16 kb 32 kb
Packet size

(a) UDP Throughput

250000

[J LoLaWe
Il MarNET — —

200000 —

225000

175000 |

150000 —

125000 —

kbytes/s

100000 — —

75000 |

50000 —

25000 —

0 T T T T T

1 kb 2 kb 4 kb 8kb 16kb 32kb
Packet size

(b) TCP Throughput

Figure 5.2: UDP and TCP throughput comparison of MarNET and LoLaWe

29

Chapter 6

Conclusion

The presented emulator is a hybrid of a complete simulation environment and a native
testing environment with real hardware. It supports very low latency timer intervals
below 100 us which enables the simulation of real-time wireless behavior like transmis-
sion delays and collision detection. The complete emulation runs on a single computer
to be as cost-effective as possible. The possibility of loading different emulation engines
makes it very easy to implement different kinds of techniques. For example a complete
IEEE802.11 MAC layer could be compared to a simple ALOA layer or any other wire-
less communication protocol. In order to emulate non-existing hardware features it is
possible to integrate these features in a modified TUN/TAP driver and support them in
the emulator with only little changes. This emulates needed features with a real ready-to-
use kernel implementation which can be used later on for the complete implementation
of the specific driver or protocol. The performance of the emulator with its fine-grain
timer intervals enables the emulation of complex wireless protocols with short backoff

times and fast transmission rates as seen in the performance tests.

The combination of a real implementation, a real operating system and a simulated re-
alistic radio propagation model could represent wireless communications more realistic
than other emulators or simulators. This emulator could be used as a second testing step
when there is no possibility to use real hardware as it is the case with the CXCC protocol.
The results can be compared with the simulator results to measure the impact of the real
operating system and tools. But of course simulation or emulation results can’t replace

reality testing.

31

Bibliography

[AO96]

[BSRT05]

[CPP]

[CSO03]

[Fri46]

[FTOO01]

[Gle]

[Gre]

[JdC]

[JS]

M. Allman and S. Ostermann. ONE - the Ohio Network Emulator. 1996.

O. Battenfeld, M. Smith, P. Reinhardt, T. Friese, and B. Freisleben. A modu-
lar routing architecture for hot swappable mobile ad hoc routing algorithms.
In Proc. of the Second International Conference on Embedded Software and

Systems, Xian, China, pages 359-366. Springer-Verlag, 2005.
GNU Common C++ - http://www.gnu.org/software/commoncpp/.

Mark Carson and Darrin Santay. Nist net: a linux-based network emulation
tool. SIGCOMM Comput. Commun. Rev., 33(3):111-126, 2003.

H. T. Friis. A note on a simple transmission formula. Proc. IRE, 34, 1946.

Juan Flynn, Hitesh Tewari, and Donal O’Mahony. JEmu: A Real Time Em-
ulation System for Mobile Ad Hoc Networks. In Proc. First Joint IEI/IEE
Symp. Telecomm. Systems Research, Dublin, Ireland, November 2001.

Thomas Gleixner. High Resolution Timer -

http://www.tglx.de/hrtimers.html.

Ben Greear. Sent-to-Self patch - http://www.ssi.bg/~ja/#loop.

Ari Johnson, Christophe de Vienne, and Murray Cumming. libxml++ -

http://libxmlplusplus.sourceforge.net/.

Glenn Judd and Peter Steenkiste. Using Emulation to Un-

derstand and Improve Wireless Networks and Applications -

33

Bibliography

[LNH*04]

[MHRO5]

[MRBV04]

[NET]

[NS2]

[PAR]

[PPO5]

[RAD]

[SHFO05]

34

http://www.cs.cmu.edu/~glennj/JuddNSDIEmulator.pdf. In NSDI 2005.

Qiong Luo, Lionel M. Ni, Bingsheng He, Hejun Wu, and Wenwei Xue.
MEADOWS: Modeling, Emulation, and Analysis of Data of Wireless Sen-
sor Networks. In DMSN ’04: Proceeedings of the st international work-
shop on Data management for sensor networks, pages 58—67, New York,
NY, USA, 2004. ACM Press.

Steffen Maier, Daniel Herrscher, and Kurt Rothermel. On Node Virtualiza-
tion for Scalable Network Emulation. In Proceedings of the 2005 Interna-
tional Symposium on Performance Evaluation of Computer and Telecommu-
nication Systems (SPECTS ’05), Philadelphia, PA, July 24-28, 2005, pages
917-928. Universitdt Stuttgart, Fakultit Informatik, Elektrotechnik und In-
formationstechnik, Simulation Councils, Inc., Juli 2005.

P. Mahadevan, A. Rodriguez, D. Becker, and A. Vahdat. MobiNet: A
Scalable Emulation Infrastructure for Ad Hoc and Wireless Networks
- http://ramp.ucsd.edu/~pmahadevan/publications/mobinet-mc2r.pdf. In
UCSD Technical Report CS2004-0792, July 2004.

NetlO - http://www.ars.de/ars/ars.nsf/docs/netio.
The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns.
Paravirtualization - http://en.wikipedia.org/wiki/Paravirtualization.

Metija Puzar and Thomas Plagemann. NEMAN: A Network Emulator for
Mobile Ad-Hoc Networks. In 8th International Conference on Telecommu-
nications (ConTEL 2005), Zagreb, Croatia, June 2005.

Radio Propagation Models in the NS-2 -

http://www.isi.edu/~weiye/pub/propagation_ns.ps.gz.

M. Smith, S. Hanemann, and B. Freisleben. Coupled simulation/emulation
for cross-layer enabled mobile wireless computing. In Proceedings of the
Second International Conference on Embedded Software and Systems, Xian,
China, pages 375-383. Springer-Verlag, 2005.

Bibliography

[SLMO7]

[WLZ*04]

[XEN]

[Z1.02]

Bjorn Scheuermann, Christian Lochert, and Martin Mauve. Implicit Hop-
by-Hop Congestion Control in Wireless Multihop Networks. In Elsevier Ad
Hoc Networks, 2007.

Hejun Wu, Qiong Luo, Pei Zheng, Bingsheng He, and Lionel M. Ni. Ac-
curate Emulation of Wireless Sensor Networks. In NPC, pages 576-583,
2004.

XEN - http://www.cl.cam.ac.uk/research/srg/netos/xen/.

Yongguang Zhang and Wei Li. An Integrated Environment for Testing Mo-
bile Ad-Hoc Networks. In MobiHoc ’02: Proceedings of the 3rd ACM
international symposium on Mobile ad hoc networking & computing, pages
104-111, New York, NY, USA, 2002. ACM Press.

35

Appendix A

Create a Module

The emulator allows the dynamic loading of emulation engine modules. The creation

of a new module is easy but has to be compliant with some premises. The first and

important requirement is that the main module class needs to be derived from the abstract

class "Virtual WLAN" (see file virtualwlan.h). The new class needs to reimplement the

method "sendPacket" in order to change the way of packet handling which is called every

time a packet should be send from one node to another. For a full control of the packet

handling it is necessary to implement extended IPPacket and Node classes. All classes

should be created in the "lolawe" namespace to keep things together.

Listing A.1: Minimal module

1 #ifndef VWLAN_EXAMPLE_H_
> #define VWLAN_EXAMPLE H_
3 #include <virtualwlan.h>
4

s namespace lolawe {

6

7 class VWLAN_example: public Virtual WLAN {

s public:
9 VWLAN_example () ;
10 virtual ~VWLAN_example() ;

1 bool sendPacket(IPPacket xpacket) { p—>send();
send the packet immediately x/

14}
15 #endif /xVWLAN_EXAMPLE H x/

} /% always

37

1

2

3

4

1

2

3

4

1

APPENDIX A. CREATE A MODULE

The second necessary thing is the loader method. To be able to load a shared object
during runtime the dlopen C-funcion is used. Because exported C++ method symbols are
named according to the class it is impossible to directly call C++ methods with dlopen. In
order to get a correct instance of the created class a wrapper function has to be provided

as follows:

Listing A.2: C wrapper functions

extern "C" {
Virtual WLANx create () {
return new VWLAN_example() ;

void destroy (VWLAN_examplex v) {
delete v;

The emulation engine shall use the provided objects for communication with the main
thread, the log thread and the timer thread. In detail the following classes are provided:

Listing A.3: The Virtual WLAN class

class Virtual WLAN: public ObjectFactory {
public:
Virtual WLAN () {};
virtual ~VirtualWLAN() {};
virtual bool sendPacket(IPPacket xpacket)

0;

(e}

virtual bool receivePacket(IPPacket &p) =
0;

virtual void setScenario(Scenario xs) { scenario = s

virtual bool initialise (char xconfigfile)
-
virtual void setEventTimer(EventTimer xt) { timer = t; };
virtual void setLogThread(LogThread %1) { logthread = 1; }
virtual long getCurrentSecs () { return timer—>getCurrentSec ();
}
virtual void start () { }
protected :
Scenario *scenario ;
EventTimer xtimer;

LogThread xlogthread;

Listing A.4: The Scenario class

class Scenario {

38

Scenario (ObjectFactory* f,string sfile);
virtual ~Scenario () ;

Nodex getNode(int n) { return nodes.at(n); }
int getNodesCount() { return nodes.size(); }
int getHeight() { return height; }

int getWidth() { return width; };

int getBandwidth() { return bandwidth; };
string getName () { return name; };

string getDescription() { return description; };

Listing A.5: The Node class

class Node: public Eventable {

public:
Node(int no);
virtual ~Node() ;
void addPosition(int time, int x, int y);
void setDescription(string desc) { description = desc; };
string getDescription() { return description; }
int getNumber() { return number; }
Positionx getPositionObject(int n) { return positions.at(n);
Positionx getPosition (int time);
int getDistance (Node xnode, int time);
void callMethod (int i, long time);
protected :

vector<Position*> positions;

int number;

string description;

int lastTimePos;

Positionx getLowerPos(int time);
Positionx getHigherPos(int time);

Listing A.6: The [PPacket class

class IPPacket: public Eventable {

public:

IPPacket(TapSelector* tap,char xraw, int len);
virtual ~IPPacket();

int getSourceTapNo () { return sourceTapNo; }
int getTargetTapNo () { return targetTapNo; }
int getPacketType () { return packetType; }
int getDatalLen() { return data_len; }

char xgetRawData() { return rawData; }

}

39

APPENDIX A. CREATE A MODULE

TapDevicex getTargetTapDev () { return tapsel —>getTapDevice(

targetTapNo); }

TapDevicex getSourceTapDev () { return tapsel —>getTapDevice (

sourceTapNo); }

void

void

send () ;
callMethod (int i, long time);

Listing A.7: The Timer class

class EventTimer : public virtual Thread {

public:

EventTimer () ;

virtual ~EventTimer () ;

void
void
void
long
long

run () ;

stop () ;

addItem (Eventable x*it, int par, long time);
long getTime () ;

getCurrentSec () ;

Listing A.8: The Logging class

class LogThread: public ThreadQueue {

public:

LogThread () ;
virtual ~LogThread () ;

void
void
void
void
void

addMessage (int level , string msg);
runQueue (void xdata);

startQueue (void) ;

stopQueue (void) ;

setLogLlevel (int i) { logLevel = i; };

Listing A.9: The Object Factory class

1 class ObjectFactory {

2

3

4

5

6

public:

virtual ~ObjectFactory () {};

virtual void setTapSelector(TapSelector xt) { tapsel = t; };

virtual Nodex createNode(int no) { return new Node(no); }

virtual IPPacketx createlPPacket(char *xraw, int len) { return

new IPPacket(tapsel ,raw, len); }

7 protected:

8

40

TapSelector xtapsel;

Appendix B

Scenario File Format

The scenario file is a XML file which sets the size of the emulation area, the number of
nodes and all positions of each node. All time values are seconds and all position values
are meters. The DTD for the XML file:

Listing B.1: DTD for Scenario files

1 <?7xml version="1.0" encoding="UTF-8"7>

2 <!—— Generated from Scenario_Example.xml by XMLBuddy —>

3 <!ELEMENT scenario (description ?,node+)>

4

5 <!ENTITY % nonNegativelnteger "NMIOKEN">

6 <!—— <IENTITY % nonNegativelnteger " datatype CDATA #FIXED °

s

nonNegativelnteger’"> —>
;
8 <!ATTLIST scenario
9 height %nonNegativelnteger; #REQUIRED
10 time %nonNegativelnteger; #REQUIRED
1 width %nonNegativelnteger; #REQUIRED
12 bandwidth %nonNegativelnteger; #REQUIRED
13 name CDATA #REQUIRED

4 >

15 <!ELEMENT description (#PCDATA)>

16 <!ELEMENT node (description?,position+)>
17 <!ATTLIST node

18 no %nonNegativelnteger; #REQUIRED
19 x %nonNegativelnteger; #REQUIRED
20 y %nonNegativelnteger; #REQUIRED
21 >

41

APPENDIX B. SCENARIO FILE FORMAT

2 <!ELEMENT position EMPTY>
23 <!ATTLIST position

2 time %nonNegativelnteger; #REQUIRED
25 x %nonNegativelnteger; #REQUIRED

26 y %nonNegativelnteger; #REQUIRED

27 >

Listing B.2: Example Scenario files

1 <?xml version="1.0" encoding="UTF-8"7>
2 <!DOCTYPE scenario SYSTEM "LoLaWe_Scenario.dtd">
3 <scenario width="1000" height="1000" time="2000" name="Test Scenario 1

" bandwidth="1000">
4 <description>This

is

the description for the first example for

a scenario file.</description>

5 <node no="1" x="10" y="10">

6 <description>This is the description for a node.</
description>

7 <position time="50" x="40" y="100" />

8 <position time="150" x="50" y="130" />

9 </node>

10 <node no="2" x="24" y="234">

1 <position time="50" x="140" y="100" />

12 <position time="150" x="650" y="30" />

13 </node>

14 <node no="3" x="10" y="10">

15 <position time="50" x="50" y="30" />

16 <position time="150" x="80" y="40" />

17 </node>

18 </scenario>

42

Ehrenwortliche Erklarung

Hiermit versichere ich, die vorliegende Bachelorarbeit selbststindig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die
aus den Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese

Arbeit hat in gleicher oder dhnlicher Form noch keiner Priifungsbehorde vorgelegen.

Diisseldorf, 5. Januar 2007 Matthias Jansen

43

	Titlepage
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Related Work
	2.1 Simulators
	2.2 Emulators
	2.2.1 MarNET
	2.2.2 NEMAN

	3 Radio Propagation Model
	3.1 Free-Space Loss Model
	3.2 Two-Ray Ground Reflection Model
	3.3 Shadowing Model
	3.4 Emulation engine

	4 The Emulator "LoLaWe"
	4.1 Implementation
	4.1.1 Design
	4.1.2 Main Listener Thread
	4.1.3 Timer Thread
	4.1.4 Logthread
	4.1.5 Radio Propagation Model

	4.2 Kernel requirements
	4.2.1 Send-to-Self Patch
	4.2.2 HRTimers Patch

	4.3 System requirements
	4.4 Requirements for testing applications

	5 Performance Analysis
	6 Conclusion
	Bibliography
	A Create a Module
	B Scenario File Format

